ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра общей и теоретической физики

Дисциплина: Физика атома и атомных явлений

Контрольная работа № 2

<u>Тема:</u> «Уравнение Шредингера. Атом водорода. Многоэлектронные атомы»

(пример контрольной работы)

Составил ассистент кафедры ОТФ СамГУ Филиппов Ю.П.

 ${
m Cam}\Gamma {
m Y}{
m -}{
m Camapa}$ 2004 год

Вариант № 1

1. Частица массы m находится в одномерной потенциальной яме U(x):

$$U(x) = \left\{ \begin{array}{ll} U_0, & \text{при} & |\mathbf{x}| > \mathbf{a}, \\ 0, & \text{при} & |x| \le a \end{array} \right\}$$

. Найти энергию основного состояния, если на краях ямы Ψ - функция втрое меньше, чем в середине ямы: $\Psi(-a) = \Psi(a) = \frac{1}{3}\Psi(0)$.

2. Определить возможные собственные значения оператора L_z и соответствующие данным значениям вероятности, для системы, находящейся в состоянии $\psi(\varphi) = A \cos^2(\varphi)$.

3. Используя правила Хунда, найти основной терм атома, электронная конфигурация незаполненной подоболочки которого: a) nd^4 ; b) nd^5 .

Вариант № 2

1. Частица массы m падает слева на прямоугольный потенциальный барьер высотой U_0 . Энергия частицы $E < U_0$. Найти расстояние от границы барьера до той точки, в которой плотность вероятности нахождения частицы уменьшится в e^3 раз.

2. Определить возможные собственные значения оператора L_z и соответствующие данным значениям вероятности, для системы, находящейся в состоянии $\psi(\varphi) = A(1 + \sin \varphi)^2$.

3. Найти число электронов в атоме, у которого заполнены: а) K-,L- оболочки, 3s- подоболочка, и на $\frac{5}{6}$ 3p- подоболочка; b) K-,L-,M- оболочки, 4s-,4p-,5s- подоболочки, и на $\frac{2}{5}$ 4d- подоболочка. Что это за атомы?

Вариант № 3

1. Частица массы m находится в одномерной потенциальной яме U(x):

$$U(x) = \left\{ \begin{array}{ll} U_0, & \text{при} & |\mathbf{x}| > \mathbf{a}, \\ 0, & \text{при} & |x| \le a \end{array} \right\}$$

. Найти энергию основного состояния, если на краях ямы Ψ - функция в четыре раза меньше, чем в середине ямы: $\Psi(-a) = \Psi(a) = \frac{1}{4}\Psi(0)$.

2. Определить возможные собственные значения оператора L_z и соответствующие данным значениям вероятности, для системы, находящейся в состоянии $\psi(\varphi) = A(1+\sin(\varphi)+\sin(2\varphi))$.

3. Используя правила Хунда, найти основной терм атома, электронная конфигурация незаполненной подоболочки которого: a) np^{1} ; b) np^{3} .

Вариант № 4

1. Частица массы m падает слева на прямоугольный потенциальный барьер высотой U_0 . Энергия частицы $E < U_0$. Найти расстояние от границы барьера до той точки, в которой плотность вероятности нахождения частицы уменьшится в e^2 раз.

2. Определить возможные собственные значения оператора L_z и соответствующие данным значениям вероятности, для системы, находящейся в состоянии $\psi(\varphi) = A \cos^4(\varphi)$.

3. Найти число электронов в атоме, у которого заполнены: а) K-, L- оболочки, 3s- подоболочка, и на $\frac{2}{3}$ 3p- подоболочка; b) K-, L-, M- оболочки, 4s-, 4p-, 5s- подоболочки, и на $\frac{7}{10}-4d-$ подоболочка. Что это за атомы?

Составитель: ассистент кафедры ОТФ ______ Ю.П. Филиппов.